Genetic Diversity

Preview

- 1. What is Genetic Diversity?
- 2. Measuring Genetic Diversity
- 3. Genetic Diversity Loss

What is Genetic Diversity?

- Differences in DNA type and/or expression among:
 - -Individuals
 - –Populations
 - -Communities
 - –Ecosystems

1.

1 Population with varied inherited traits

Withgott and Laposata 2012

Reece et al. 2014

- Sickle-cell trait
 - -Gene provides instructions for making hemoglobin
 - –Two types
 - normal instructions; normal hemoglobin; normal blood cells (S)
 - Abnormal instructions; abnormal hemoglobin; sickle-shaped blood cells (s)

- Sickle-cell anemia cont'd
 - Genetic combinations
 - 2 normal (SS) → healthy
 - 2 abnormal (ss) → early death
 - 1 normal, 1 abnormal (Ss) → no symptoms of disease

2.

Correlation between:

- 1. Distribution of sickle-cell gene
- 2. Distribution of malaria

- Knowing genetic diversity allows us to understand
 - -Patterns of natural selection
 - Probability of disease
 - -Status of local vs. global populations

- Two important measures
 - -Polymorphism
 - -Heterozygosity
- Measurement usually involves indirect methods
 - -E.g., electrophoresis

- Polymorphism (P)
 - Proportion of genes that are polymorphic
 - –Measure frequency of most common allele
 - Below 95% = polymorphic
 - At or above 95% = not polymorphic
 - -Rare alleles (frequency < 0.05)

- Heterozygosity (H)
 - Proportion of individuals in a population heterozygous for a particular gene OR
 - -Proportion of genes at which the average individual is heterozygous

- Two handy equations
 - -Hardy-Weinberg
 - -p + q = 1 $-p^2 + 2pq + q^2 = 1$
- How much heterozygosity did we observe?
- How much heterozygosity would be expected?

- Two levels of genetic diversity
 - -Within population
 - -Among (between) populations

Should preserve both

Could save either one

- Gene flow
 - -Populations connected vs. isolated
 - Allows for greater within population diversity

- Diversity values
 - -Evolutionary potential
 - Higher diversity gives selection more to work with

- Loss of Fitness
 - –Low fertility
 - –High mortality
 - Inbreeding depression
 - –Overcollecting

- Why do inbred population lose fitness?
 - –More homozygotes
 - -Heterozygote advantage
 - -Lower evolutionary potential

Genotype is either EE or Ee

© The McGraw-Hill Companies, Inc./Bob Coyle, photographer

Genotype is ee

© The McGraw-Hill Companies, Inc./Bob Coyle, photographer

Homozygous Dominant

Homozygous Recessive

Heterozygous

3.

Captive-bred animals

Inbreeding depression

- Outbreeding depression
 - Occurs in species introductions
 - E.g., ibex reintroductions, hybrid breakdown

3.

- Genetic Bottlenecks
 - Random event occurs
 - Subsequent generations do not represent full diversity of original population
 - Involves loss of alleles through genetic drift

An average individual is heterozygous at 4-15% of its genes.

(b) M. lewisii with an M. cardinalis flower-color allele

Changes to single locus can influence fitness

(c) Typical **Mimulus** cardinalis

© 2011 Pearson Education, Inc.

(a) Typical

lewisii

(d) M. cardinalis with an M. lewisii flower-color allele

3.

Location	Population size	Number of alleles per locus	Percentage of eggs hatched
Illinois 1930–1960s 1993	1,000–25,000 <50	5.2 3.7	93 <50
Kansas, 1998 (no bottleneck)	750,000	5.8	99
Nebraska, 1998 (no bottleneck)	75,000– 200,000	5.8	96

(b)

Reece et al. 2014

3.

- Case Study: Cheetahs
 - -20,000 years ago: 4 species
 - -Today:
 - Single species
 - Fragmented habitat
 - Inbreeding depression

Resources

Publications

- Hunter Jr., M. L., and J. Gibbs. 2007. Fundamentals of Conservation Biology, 3rd Edition. Blackwell, Malden.
- Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., and R.B. Jackson. 2014. Campbell Biology, 10th edition. Pearson, New York.
- Withgott, J. and M. Laposata. 2012. Essential Environment: The Science behind the Stories, 4th Edition. Pearson, New York.